Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 17(10): e0248793, 2022.
Article in English | MEDLINE | ID: covidwho-2065106

ABSTRACT

Systematic approaches to epidemiologic data collection are critical for informing pandemic responses, providing information for the targeting and timing of mitigations, for judging the efficacy and efficiency of alternative response strategies, and for conducting real-world impact assessments. Here, we report on a scoping study to assess the completeness of epidemiological data available for COVID-19 pandemic management in the United States, enumerating authoritative US government estimates of parameters of infectious transmission, infection severity, and disease burden and characterizing the extent and scope of US public health affiliated epidemiological investigations published through November 2021. While we found authoritative estimates for most expected transmission and disease severity parameters, some were lacking, and others had significant uncertainties. Moreover, most transmission parameters were not validated domestically or re-assessed over the course of the pandemic. Publicly available disease surveillance measures did grow appreciably in scope and resolution over time; however, their resolution with regards to specific populations and exposure settings remained limited. We identified 283 published epidemiological reports authored by investigators affiliated with U.S. governmental public health entities. Most reported on descriptive studies. Published analytic studies did not appear to fully respond to knowledge gaps or to provide systematic evidence to support, evaluate or tailor community mitigation strategies. The existence of epidemiological data gaps 18 months after the declaration of the COVID-19 pandemic underscores the need for more timely standardization of data collection practices and for anticipatory research priorities and protocols for emerging infectious disease epidemics.


Subject(s)
COVID-19 , COVID-19/epidemiology , Government , Humans , Pandemics , Public Health , SARS-CoV-2 , United States/epidemiology
2.
PLoS One ; 15(12): e0243026, 2020.
Article in English | MEDLINE | ID: covidwho-1177757

ABSTRACT

We describe a method to estimate individual risks of hospitalization and death attributable to non-household and household transmission of SARS-CoV-2 using available public data on confirmed-case incidence data along with estimates of the clinical fraction, timing of transmission, isolation adherence, secondary infection risks, contact rates, and case-hospitalization and case-fatality ratios. Using the method, we estimate that risks for a 90-day period at the median daily summertime U.S. county confirmed COVID-19 case incidence of 10.8 per 100,000 and pre-pandemic contact rates range from 0.4 to 8.9 per 100,000 for the four deciles of age between 20 and 60 years. The corresponding 90-day period risk of hospitalization ranges from 13.7 to 69.2 per 100,000. Assuming a non-household secondary infection risk of 4% and pre-pandemic contact rates, the share of transmissions attributable to household settings ranges from 73% to 78%. These estimates are sensitive to the parameter assumptions; nevertheless, they are comparable to the COVID-19 hospitalization and fatality rates observed over the time period. We conclude that individual risk of hospitalization and death from SARS-CoV-2 infection is calculable from publicly available data sources. Access to publicly reported infection incidence data by setting and other exposure characteristics along with setting specific estimates of secondary infection risk would allow for more precise individual risk estimation.


Subject(s)
COVID-19/epidemiology , Forecasting/methods , Hospitalization/trends , Adult , Contact Tracing/methods , Coronavirus Infections/epidemiology , Databases, Factual , Humans , Incidence , Middle Aged , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Risk Factors , SARS-CoV-2/pathogenicity , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL